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Abstract

Since the turn of the century, we have witnessed an extremely intensive development of
biotechnology and nanotechnology, which, in terms of intensity can only be compared
to the development of information technology and the resulting emergence of artificial
intelligence. In the present review, we deliberately omit the development of information
technology and artificial intelligence. Instead, our interest is focused on bionanomaterials
and nanobiomaterials, their production and applications, and, in particular, the different
meanings of these terms. We adopted an analysis of the literature published between
January 2000 and May 2025, available in PubMed. The database was searched for se-
lected areas: types (origin, structure, and function), manufacturing methods (chemical,
physicochemical, and biological), and applications (medicine/pharmacy, textile technology,
cosmetology, and agriculture/environment). Our findings revealed a significant increase
in the number of publications for both terms, with nanobiomaterials predominating. The
authors of the publications included in PubMed clearly outline the separation of meanings
of both concepts, despite the lack of normative regulations in this regard. Nanoparticles
are the most commonly represented type in the use of both terms, and drug delivery
is a dominant application. However, it is worth noting the lack of nanobiomaterials in
the agricultural /environmental application categories. Despite the enormous similarity
between the terms “nanobiomaterials” and “bionanomaterials,” both in terms of nomen-
clature and application, there is a significant difference resulting from the manufacturing
technologies and applications used. The term “nanobiomaterials” should be assigned
only to biomaterials, in accordance with the definition of a biomaterial, regardless of their
manufacturing technology, while the term “bionanomaterials” should be applied to all
products of bionanotechnology, excluding products used as biomaterials.

Keywords: biotechnology; nanotechnology; bionanomaterial; nanobiomaterial

1. Introduction

The successes of artificial intelligence resulting from the intensive development of
information technology are currently effectively attracting our attention and making a
stunning impression. Progress in nanotechnology and biotechnology, which had been
in the spotlight since the turn of the century, has been somewhat overshadowed. Al-
though these areas seem very distant from each other, they have a lot in common and
interact with each other. The progress of information technology would not be possible
without the progress in materials engineering, just as the current dynamic development
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in the area of nanotechnology and biotechnology could not take place without the use
of information technology and artificial intelligence achievements. An example is the
ease of access to published information and the speed with which it can be processed.
From this very short argument, the importance of mutual influence and stimulation of
the development of various technologies results, which, of course translate into economic
and social benefits. While these benefits may not always fully address environmental
concerns, we believe that economic and social goals can be reconciled with respect for
the environment in which we live. Let us leave information technology and artificial
intelligence aside and focus on products emerging at the intersection of biotechnology
and nanotechnology, i.e., products resulting from the interaction of both technologies. We
mean here materials referred to as bionanomaterials and nanobiomaterials. We noticed
that there are currently no available normative regulations regarding these concepts. For
example, we found no mention of a definition of these terms in the ISO/TS 80004-1:2023
standard (Nanotechnologies—Vocabulary Part 1: Core vocabulary standard) [1]. However,
the ISO/TS 80004-5:2011 standard (Nanotechnologies—Vocabulary Part 5: Nano/bio in-
terface standard [2]) mentions the terms bionanotechnology and nanobiotechnology, as
well as the terms bio-inspired nanotechnology and biomimetic nanotechnology. Other stan-
dards on nanomaterials, including technical committees ISO/TC 229 Nanotechnologies [3],
ISO/TS 13329:2024 Nanomaterials [4], or the Standards for Nanotechnology of the National
Nanotechnology Initiative [5], also do not include definitions of these terms. Similarly,
standards on biotechnology also do not address them either. Due to the lack of formal
definitions, we decided to investigate how these concepts are treated by the authors of
scientific reports and, on this basis, attempt to differentiate these concepts or assume there
are no differences in their meaning. Even a cursory analysis of the PubMed [6] database
indicates that the authors of scientific reports tend to treat both concepts separately. We
conducted the analysis for the time period from January 2000 to May 2025 (see Figure 1).
When asked about bionanomaterials, we received 684 responses, while nanobiomaterials
received 939 responses. It is also worth noting that when both terms were searched to-
gether, we received only two responses, which suggests that the authors use these terms
very selectively.
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Figure 1. Number of papers per year containing the terms bionanomaterials (BNM) and nanobioma-
terials (NBM) found in the PubMed database.
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The following literature review allows us to define the concepts of bionanomateri-
als and nanobiomaterials, which will also allow us to differentiate them with respect to
technological production processes and application areas. Finally, we will try to consider
whether the situation could be simplified by adopting a solution in which both concepts
are identical, i.e., there is no difference between them.

2. Biomaterials

Let us begin our considerations with the concept of biomaterials. Numerous definitions
of this term can be cited, ranging from brief to extensive, but for our purposes, let use the
very general definition: “Biomaterials are natural or synthetic materials designed to be
compatible with the human body and used in a biological environment and are generally
used in medical and dental applications” [7]. This definition should be further expanded
to include materials used in veterinary medicine [8]. Obviously, this definition does not
include the types of biomaterials, their production methods, and applications, as can be
read in the following sections.

2.1. Types of Biomaterials

Biomaterials can be categorized into four main groups: ceramics, metals, polymers,
and composites [9]. Within these groups, we find natural and synthetic materials, as well
as those that are highly biocompatible, bioactive, or biodegradable. Ceramic biomaterials
are characterized by their high hardness, significant corrosion resistance and good biocom-
patibility, including, among others: aluminum oxide (Al,O3) [10], bioactive glass [11], and
apatite, including hydroxyapatites [12], as well as carbon materials [13], including carbon
layers in the form of diamond-like carbon structures (DLC) [14] or nanocrystalline dia-
monds (NCD) [15]. Metallic biomaterials are characterized by high mechanical strength and
plasticity, including, among others: medical steel, titanium alloys, and cobalt alloys [16,17].
Polymeric biomaterials, that offer a wide range of properties including: polyetheretherke-
tone (PEEK) [16,18], polyethylene (PE) [19], polypropylene (PP) [20], polylactide (PLA) [21],
and polytetrafluoroethylene (PTFE) [22]. Composite biomaterials, which are a combination
of various materials to obtain the desired properties, include: ceramic-polymer compos-
ites [23], metal-polymer composites [24], as well as DLC or NCD carbon coatings [14,15].
The selection of the appropriate biomaterial always depends on the intended function and
the application of the manufactured medical device.

2.2. Methods of Producing Biomaterials

Biomaterial production is a key step that involves processing the source material to
transform it into a high-quality, biocompatible product known as medical-grade biomaterial.
The resulting biomaterial is used to produce a medical device that meets the requirements
of the ISO 10993 standard [25] and is intended for a specific clinical application. The
following methods are used in the production of biomaterials: (a) ceramic forming by uni-
axial pressing, extrusion, injection molding, casting, and sintering [26], (b) metalworking
by subtractive [27] and additive [28] methods, (c) polymer formation, including solvent
casting, molecular leaching, gas foaming, freeze-drying, molecular self-assembly, electro-
spinning [29], formation of sponges, hydrogels, also for injection (injectable hydrogels) [30],
and 3D printing, including bioprinting [29,30], (d) obtaining biopolymers from nature,
including the use of animal tissues [31], as well as plant tissues and microorganisms [32],
taking into account their appropriate processing, (e) nanofabrication allowing the creation
of structures of nanometric dimensions (nanostructures) referred to as bionanomaterials
(BNM) [33,34].
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Following biomaterial production, the next step involves processing and modification,
leading to composite biomaterials with enhanced properties that better meet the clinical
requirements for future medical devices. This stage includes, for example: (a) production
of biocompatible coatings on the surface of biomaterial by sputtering [35], application
of polymer or ceramic coatings [36], carbon layers [14,15], and doped carbon layers [37],
(b) combining biomaterials using various techniques to obtain composite structures [38],
including biodegradable ones based on magnesium [39].

2.3. Applications of Biomaterials

Biomaterials are widely used in human and veterinary medicine, dentistry, and tis-
sue engineering, where they are used to produce implants, prostheses, surgical sutures,
dressings, and bone regeneration materials. They are used to replace damaged tissues
and organs and to support healing and regeneration processes. Examples of biomaterial
applications in medicine include: (a) dental [40], orthopedic [41], neurological [42], spine
surgery [43], peripheral nerve regeneration [44], ophthalmic [45], vascular [46], and cardiac
surgery [47] implants; (b) surgical sutures [48], meshes [49] and membranes [50], and mate-
rials for the reconstruction of bone defects [51]; (c) dressings, also in the form of hydrogels,
for the treatment of wounds, including burns, pressure sores, ulcers [52], and diabetes [53];
(d) scaffolds for cells in tissue regeneration [54] and biomaterials for medical imaging [55].

3. Nanomaterials

In accordance with the recommendation of the European Commission on 11 June
2022 [56]: “’Nanomaterial’ means a natural, incidental or manufactured material consisting
of solid particles that are present, either on their own or as identifiable constituent particles
in aggregates or agglomerates, and where 50% or more of these particles in the number-
based size distribution fulfill at least one of the following conditions: (a) one or more
external dimensions of the particle are in the size range 1 nm to 100 nm; (b) the particle
has an elongated shape, such as a rod, fiber or tube, where two external dimensions are
smaller than 1 nm and the other dimension is larger than 100 nm; (c) the particle has
a plate-like shape, where one external dimension is smaller than 1 nm and the other
dimensions are larger than 100 nm.” Detailed guidance on the implementation of this
commission recommendation is available in the Joint Research Center (JRC) Science for
Policy report [57]. A characteristic feature of nanoparticles is a large surface-to-volume ratio,
which results in a high percentage of atoms present on the surface [58], up to the limiting
conditions when all atoms are available on the surface (e.g., graphene) [59]. The second
characteristic feature is the ubiquity of quantum effects controlling interactions between
atoms and molecules on the nanometric scale [60]. Both of these features are responsible for
the unique physicochemical properties of nanomaterials, which are completely different
from the physicochemical properties of their macroscopic counterparts.

3.1. Types of Nanomaterials

Nanomaterials can be classified in several ways—depending on their shape, structure,
chemical composition, or origin. Based on the number of dimensions, they can be divided
into: (a) nanoparticles (e.g., quantum dots, dendrimers, and liposomes) with all dimen-
sions < 100 nm (0 D), (b) nanofibers and nanorods with two dimensions < 100 nm (1D),
(c) nanolayers with one dimension < 100 nm (2D), and (d) three-dimensional nanostructures
composed of nanoelements (3D) [61,62]. In terms of chemical composition, nanomaterials
are usually divided into carbon, metal and metal oxide, ceramic, polymer, and compos-
ite [62,63]. Depending on their origin, nanomaterials can be classified as natural (volcanic
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eruptions and weathering of minerals), synthetic (intentionally produced—engineered),
and incidental (created accidentally, e.g., in combustion or detonation processes) [61,63].

3.2. Methods of Producing Nanomaterials

The production of nanomaterials is carried out according to one of two strategies:
“top-down” or “bottom-up” methods. The “top-down” strategy, which involves the frag-
mentation of macroscopic material, includes ball milling, thermal decomposition, lithog-
raphy, laser ablation, and etching. The “bottom-up” strategy, which involves building
nanostructures from atoms or molecules, involves chemical synthesis methods, deposition
methods, including Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD),
Plasma Enhanced Chemical Vapor Deposition (PECVD) and their modifications, sol-gel
methods, self-assembly methods, electrodeposition, synthesis using microorganisms, and
green synthesis methods [61-63].

3.3. Applications of Nanomaterials

Nanomaterials have a wide range of applications across various fields due to their
unique physicochemical properties and biological effects. In medicine and pharmacy,
nanomaterials are used for drug delivery [64,65], imaging diagnostics [65], tissue engineer-
ing [66], and the production of antimicrobial coatings [67]. Examples of applications in
electronics and computer science include nanoelectronics, including electronic components
such as transistors [68], new types of memory [69], sensors [70], screens, and displays [71].
In the energy sector, nanomaterials are used to produce photovoltaic cells [72] and su-
percapacitors [73], while in chemistry, they serve as efficient and selective catalysts [74].
The industrial applications of nanomaterials are very wide, especially in the automotive
industry [75], and also through their use in new building materials [76], nanocompos-
ites [77], protective coatings [78], functional textiles [79], as well as active packaging [80]
and food quality sensors [81], in cosmetic products [82], and household chemicals [83]. Due
to the widespread use of nanomaterials, their potential adverse impact on the environment
and our health should be taken into account, and this potential threat must be constantly
monitored [84].

4. Nanobiomaterials and Bionanomaterials
4.1. Nanobiomaterials

Against the backdrop of rapidly developing nanotechnology, the need to implement
this technology for the production of biomaterials has inevitably arisen. The first available
information using the term “nanobiomaterial,” in the form of review papers available only
in Chinese, appeared in 2002 and concerned the nanostructuring of scaffolds for tissue cul-
ture [85,86]. Due to the review format of the publication, it should be assumed that original
research papers on the production and use of nanobiomaterials, although not necessarily
named as such, appeared several years earlier, which clearly confirms the turn of the cen-
tury as the emergence of nanobiomaterials. Nanoparticles are characterized by dimensions
similar to those of bioparticles (e.g., proteins and nucleic acids) and cellular structures
(e.g., membranes and cytoskeletal structures). The integration of nanoparticles with unique
electronic, photonic, and catalytic properties with biomaterials with unique recognition,
catalytic, and inhibitory properties leads to the creation of new hybrid nanobiomaterials
with synergistic properties and functions [87]. In this sense, nanobiomaterials should be
considered a product of intentionally combined efforts in the fields of nanotechnology and
biomaterials engineering, which has created enormous opportunities for improving the
prevention, diagnosis, and treatment of various diseases. Nanobiomaterials represent a
new class of extraordinary biomaterials with unique structures and properties currently
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finding widespread biomedical applications [88]. Examples of nanobiomaterial types, their
structures and functions, as well as methods of fabrication and application are summarized
in Table 1 for easier comparison with bionanomaterials.

4.2. Bionanomaterials

As a result of the intensive development of biotechnology and the unique properties
of its products, the possibility of combining nanotechnology and biotechnology, known as
nanobiotechnology, has clearly emerged. This has reduced the harmful ecological impact
of chemical synthesis of nanomaterials [89] and resulted in the development of a new
class of nanomaterials known as bionanomaterials [90]. Bionanomaterials are materials
composed almost entirely or largely of biological molecules produced by cells, such as
peptides and proteins, nucleic acids, lipids, oligosaccharides, as well as secondary metabo-
lites and viruses, forming molecular structures with nanometric dimensions [91]. This
class also includes metal and metal oxide nanoparticles synthesized by microorganisms
and plants [92]. Bionanomaterials possess unique structural, chemical, physical, optical,
functional, mechanical, and electrical properties that distinguish them from macroscopic
materials due to their exceptionally small size. These properties are valuable in various
medical applications, but bionanomaterials are also widely used in other sectors of the
economy [93]. A list of examples of types of bionanomaterials, their structures and func-
tions, as well as methods of production and application, is collected in Table 1 for easier

comparison with nanobiomaterials.

Table 1. Summary of selected exemplary information on nanobiomaterials and bionanomaterials.

Nanobiomaterials Bionanomaterials
Features of NBM and BNM
Selected Examples
types origin natural bacterial extracellular vesicles as natural ~ bio-based nanomaterials [91],
nanomaterials in disease diagnosis and natural biopolymers [96],
therapeutics [94],
microbial cellulose for healing of
wounds [95],
synthetic hydroxyapatite (HA) Al,O3-TiO, [97], synthetic biopolymers [96],
synthetic polymer-based synthetic polymer-based
nanocomposites [98], nanocomposites [98]
hybrid hybrid nano hydrogel for bone protein-based functional hybrid
regeneration [99], bionanomaterials [101],
peroxidase-mimic GSF@AuNPs hybrid hybrid chitosan-cerium oxide
nanoparticles [100], nanoparticles [102],
structure nanoparticles TiO, nanoparticles—a promising bioinspired nanoparticles emerge for
candidate for medical use [105],
wound healing applications [103], protein corona formation on single
collagen-I@ AuNPs for treating skin nanoparticles for theranostic
injuries [104], applications [106],
nanofibers/ MnO, nanofibers for selective and cellulose nanofibers and sodium
nanowires sensitive detection of biomolecules [107],  alginate composite with antibacterial
nanowires for selective detection of properties [109],
chloramphenicol [108], ATP as building blocks for the
self-assembly of excitonic
nanowires [110],
nanocoatings nanocoatings and their composites in gentamicin loaded multilayers
dentistry [111], modified titanium coatings for
ZnO based nano-architectures, films and  prevention of implant infection [113],
coatings for biomedical polysaccharide based coatings for fruit
applications [112], preservation [114],
nanohydrogels halofuginone-silver thermosensitive chitosan-inspired

nanohydrogels with antibacterial and
anti-inflammatory properties [115],
nanogels as promising nanosystems to
treat a wide range of acute and chronic
healthcare scenarios [116],

(nano)hydrogels [117]
nanogels as carriers for medical
applications [118],
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Table 1. Cont.

Nanobiomaterials Bionanomaterials
Features of NBM and BNM
Selected Examples
types functions biocompatible biocompatibility of conjugation of nanoparticles with the
nanobiomaterials [119], biological molecules makes them more
biocompatibility of chitosan-carbon biocompatible [91],
nanocage hybrids for sustained drug biocompatible bionanomaterials for
release [120], food packing [121],
bioactive highly bioactive nanoparticle for advanced bioactive nanomaterials for
activating osteogenesis [122], diagnosis and treatment [124],
osteogenic nanometric bioactive glass bioactive polymers and
particles [123], nanobiomaterials composites [125],
biodegradable bacterial cellulose—nanobiomaterial for =~ biodegradable poly(amino
biodegradable face masks [126], acid)-gold-magnetic complex for
biodegradable PLA nanoplatforms as photothermal treatment [128],
coatings for cardiovascular stents [127], biodegradable PEG-dendritic block
copolymers [129],
targeted siRNA drug delivery strategies [130], phage particles for targeted delivery of
extracellular vesicles in targeted delivery  personalized neoantigen vaccines [132],
towards specific cells [131], molecularly targeted viral
nanoparticles as tools for imaging
cancer [133],
manufacturing chemical polymerization ~ on-surface polymerization in living techniques for chemical and biological
methods cells [134], synthesis of polymeric
techniques for chemical and biological nanoparticles [135],
synthesis of polymeric microwave-assisted click
nanoparticles [135], polymerization of cyclic
oligomers [136],
functionalization surface functionalization of functionalization of green synthesized
nanobiomaterials for tissue engineering bionanomaterials [139],
and regenerative medicine [137], lignocellulosic bionanomaterials for
functionalization of tissue-specific biosensor applications [140],
bioinks [138],
physicochemical radiation osteoconductive effect of a irradiation effects in polymer
nanocomposite membrane treated with composites for their conversion into
UV radiation [141], ] ) hybrids [143],
designing nanostructured Ti6Al4V with  sirface modification of polymers by
directed irradiation synthesis [142], exposure to extreme ultraviolet
radiation [144],
electrospinning  polyvinyl alcohol/chitosan nanofibrous electrospinning technology, machine
films by electrospinning method [145], learning, and control approaches [147],
application of electrospinning technology
in the biomedical field [146],
chemical /biological ~ synthesis/green  synthesis of copper green synthesis of hydrogel
synthesis synthesis nanobiomaterials [148], scaffolds [150],
synthesis of biomimetic green synthesis with root extract [151],
nano/submicro-fibrous tubes for self-assembling
potential small-diameter vascular bionanomaterials [152],
grafts [149],
applications medicine/pharmacy  drug delivery nanobiomaterials in spatio-temporal drug delivery with supramolecular
and controlled drug delivery for lungs [153],  amphiphilic macrocycle
textile technology rotavirus as a vector for heterologous nanoparticles [155],
peptides, drug delivery, and production  plant virus nanoparticles as
of nanobiomaterials [154], nanocarriers for drug delivery and
imaging [156],
imaging fluorescence bioimaging of molecular bionanomaterials and systems for
fluorophores [157], enhanced bioimaging in biomedical
hyperspectral imaging for label free applications [159],
detection of nanobiomaterials [158], viral nanoparticles for in vivo tumor
imaging [160],
scaffolds/tissue 3D bioprinting and nanotechnology in extending the versatility of
engineering tissue engineering scaffolds [161], bionanomaterial scaffolds [163],
surface modification by nanobiomaterials ~ amyloid fibrils as a nanoscaffold for
for vascular tissue engineering [162], enzyme immobilization [164],
dressings polyvinyl alcohol/chitosan nanofibrous bionanomaterials for skin

films by electrospinning method for
wound dressings [144],
nanobiomaterials for vascular biology
and wound management [165],

regeneration [166],
bionanomaterials in wound
dressings [167],
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Table 1. Cont.

Nanobiomaterials Bionanomaterials
Features of NBM and BNM
Selected Examples
applications medicine/pharmacy  diagnostics nanobiomaterials for point-of-care clinical in vivo nanodiagnostics [170],
and diagnostics [168], bionanomaterials for diagnosis and
textile technology diagnostics strategies based on therapy of SARS-CoV-2 [171],
engineered nanobiomaterials [169],
textile/fabrics composites based on CNTs and 2D biomimicry in the field of textile
material coated fabric sensors [172], technology [174],
silver plating on polyester and cotton
blended fabric [173],
cosmetology cosmetics dermal delivery of drugs and green synthesized nanomaterials for
cosmetics [175], cosmetics [177],
nanobiomaterials in cosmetics [176], liposomes in cosmetics [178],

il h pesticides bionanomaterials towards the
agriculture atnd the environmental and agricultural
environmen domain [179],

nanopesticide application in crop
protection [180],

remediation recent advances in
nanoremediation [181],
remediation of microplastics using
bionanomaterials [182],

packaging application of an organic silver-metal bionanomaterials for development of

framework modified with sodium
alginate in packaging [183],
nanobiomaterials for food packaging
sensor applications [184],

sustainable food packaging [157],
(bio)nanotechnology in food
science [185],

4.3. Discussion

The concepts of nanobiomaterials and bionanomaterials derive from technological
advances in nanotechnology and biotechnology and the specific demands of biomate-
rials engineering. Nanotechnology arose from the scientific achievements of the 20th
century in physics and chemistry. At the turn of the 20th and 21st centuries, nanotech-
nology matured to allow the use of biotechnological solutions, and thus products known
as bionanomaterials emerged. A characteristic feature of bionanomaterials is the use of
biotechnological methods for their production and the possession of properties typical of
nanomaterials. Unlike bionanomaterials, nanobiomaterials are the products of biomaterials
engineering, which utilize advances in biotechnology and nanotechnology to obtain quali-
tatively new biomaterials intended for biomedical applications. In this case, the specific
biomedical application is decisive, as opposed to the broadly understood possibilities
of bionanomaterials.

When analyzing the data presented in Table 1, it becomes evident that in most cases the
information regarding nanobiomaterials and bionanomaterials is either similar or identical.
The conclusion may arise that distinguishing these terms is not particularly significant.
In some cases, this likely results from a lack of consequences in the use of these terms,
and sometimes they are used inconsistently with their actual meaning. For example, the
paper [181] discusses the use of nanotechnology and bionanotechnology products for soil
remediation. In the light of the above considerations, bionanotechnology products should
be referred to as bionanomaterials, while the authors use the term nanobiomaterials in
their keywords. In another work [186], both terms are used interchangeably. The paper
indicates that the authors are interested in biotechnologically modified 2D nanosheets for
a wide range of industrial applications, and the correct term for these products would be
bionanomaterials. The opposite situation can be found in another work [187], where the
technology of producing nanomaterials for biomedical applications, i.e., a nanobiomaterial,
is presented and such a term is included among the keywords, while the title of the
publication contains the term bionanomaterials.
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A noticeable difference appears when the use of the term “nanobiomaterials”, as well
as “biomaterials”, does not make much sense, while the meaning of “nanomaterials”, and,
in particular, “bionanomaterials”, are crucial. For example, in relation to plant protection
products and soil remediation, we did not find any examples of nanobiomaterials used in
these application areas, while the term “bionanomaterials” was used in this context. It is
worth noting the possible false-positive responses provided by PubMed in this case. For
the queries “bionanomaterials” and “pesticides,” some results were returned due to the
presence of the term “bionanomaterials” in the authors’ affiliation (Bionanomaterials and
Bioengineering Group) [188] or the appearance of this term in the reference list [146].

To facilitate tracking the frequency of occurrence of the terms bionanomaterials or
nanobiomaterials in the PubMed database in combination with the categories contained in
Table 1, a relevant summary is provided below in graphical form (Figure 2).

Number of responses for selected categories

350 . .
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Figure 2. The number of the PubMed database responses for selected categories corresponding to the
categories in Table 1.

From this graph, it is clear that the most frequently represented type of both bionano-
materials and nanobiomaterials is in the form of nanoparticles, while the most frequently
cited application is drug delivery, with biomedical applications clearly predominating.
Some categories are very poorly represented for both terms. It can also be concluded that al-
though nanobiomaterials dominate, all categories are represented similarly for both terms.

Of course, it can be concluded that the nomenclature issue is not significant, especially
since we encounter similar dilemmas when using the terms “particle” and “molecule.” The
concept of particles is reserved for objects of physics, such as elementary particles or tiny
material objects. The concept of molecules has found its place in chemistry and describes
multiatomic objects. This division would not pose any problems were it not for the emer-
gence of nanotechnology. Nanotechnology deals with objects much larger than elementary
particles but often comparable to many chemical molecules, especially when they occur
in the form of polymers, including biopolymers. This situation often leads to confusion,
as biopolymers are sometimes treated as chemical molecules, particularly in biochemistry,
and at other times as nanoparticles resulting from applications of bionanotechnology.

However, the problem we mentioned with the nomenclature of nanobiomaterials and
bionanomaterials has a slightly different meaning. It concerns the same field of technology,
namely nanotechnology. Here, precision in the use of these terms would be required. There-
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fore, we propose that products of nanotechnology or bionanotechnology used in production
and applications as biomaterials, in accordance with the definition of biomaterial, should
be referred to as nanobiomaterials. In contrast, bionanotechnology products resulting
from the application of biotechnology, or even inspired by the functioning of biological
objects, should be referred to as bionanomaterials. This distinction will help avoid many
unnecessary misunderstandings in the future and improve clarity within the field.

5. Conclusions

Despite the enormous similarity between the terms “nanobiomaterials” and “bionano-
materials,” both in terms of nomenclature and application, there is a significant difference
that arises from the manufacturing technologies and applications used. We propose that
the term “nanobiomaterials” be assigned exclusively to biomaterials, in accordance with
the definition of a biomaterial, regardless of their manufacturing technology, while the term
“bionanomaterials” should be applied to all products of bionanotechnology, excluding
those used as biomaterials. It should be acknowledged that these terms are not identical
and are not interchangeable. We believe it is essential for the relevant standardization
bodies to take a position on the issue raised in this review and provide clear and precise
definitions for both terms.
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