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Abstract 
Deliverable 5.1 – the report on the state of the art and modeling plan – serves to summarize 

the current situation regarding the experimental and computational methods and to define 

the initial modelling plan that will guide the WP5 along the CheMatSustain project. This 

includes, a review and discussion of the overall state of the art regarding the assessment of 

the safety and biodegradability of chemicals and materials, including both the experimental 

methods (which should provide data for modelling) and the computational methods (which 

reflect the current technology regarding modelling). Furthermore, it presents the initial steps 

of data mining and discusses the availability of data and its impact. Finally, the deliverable 

presents an initial modelling plan that will guide the WP5 by establishing which parameters 

are going to be prioritized both for tasks T5.2 and T5.3.  

Keywords 
Computational methods, toxicity, in silico methods, in vitro methods, data mining.  
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Introduction  
On the contents and scope of this deliverable 

WP5 aim is to explore the use of in silico data-based models to identify, group and assess 

the (eco)toxicity of chemicals and (nano)materials (CNMs). Thus, a series of computational 

prediction models will be assessed and new models will be developed for a series of 

chemicals (Task 5.2) and materials (Task 5.3). Finally, some of the most promising models 

will be implemented in a computational tool to facilitate their application (Task 5.4). However, 

such advancements require a review of the existing modeling approaches, as well as 

knowledge on the availability of experimental data to develop the models. Hence, the first 

phase of the WP5 consists in reviewing the existing methods (computational and 

experimental) and compiling data related to the projected model (Task 5.1). This report 

presents a summary of the findings obtained during this phase, as well as a discussion of the 

consequences of this research in the planning of the following tasks.  

Computational models, and in particular QSAR models, for organic, molecular chemicals are 

a mature technology widely accepted by scientists and administration. However, the 

development of models for materials is a more challenging issue, due both to the availability 

of data and additional technical issues. Thus, this deliverable mainly focuses on the models 

for materials which are the major challenge of the WP5.  

Bibliographic research, in addition to providing an overview of the state of the art, is a key 

component in the preparation of the modelling plan for the WP5. The selection of the 

endpoints is based both on the relevance for the CMS project (i.e. interaction with other WPs 

and significance on the SSbD approach) and on the availability of data. An endpoint in this 

context refers to the exact parameters predicted by the in silico models, such as a 

physicochemical property, certain toxicological or biological activity, or the result of a 

particular experimental test. Hence, this deliverable includes a description of the data-mining 

process and a summary of the results. There are plenty of standardized experimental 

methods for molecular chemicals, (harmonized and accepted for regulatory and scientific 

objectives), but their application to materials, and in particular to nanomaterials, is not fully 

standardized and the availability of data is scarcer.  
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State of the art  
Summary of the state of the art in in silico modelling of chemicals and materials 

A thorough review of the literature has been done regarding the methodology done to assess 

the toxicity of CNMs. Due to the objectives of the WP5, the main focus was computational 

modeling, but also experimental methods have been considered (including those methods 

that are present in the analysis of the data availability).  

Toxicity assessment methods of CNMs  
The general aim of toxicology is to understand, evaluate and quantify the damage of 

chemical substances to humans. Hence, clinical data from humans is very informative and 

can be used to identify toxins. However, it cannot be used systematically to explore new 

scenarios and experimental toxicology mostly uses data obtained from different models. 

Toxicological tests are then often classified according to the kind in model as in vivo, in vitro, 

and in chemico (in addition of in silico that we will discuss separately), depending on the 

nature of the biological target used to model humans.  

There is a significant story of development and enhancement of experimental methods to 

assess toxicity, both for scientific objective such as the understanding of toxicological 

mechanisms and as a part of the risk evaluation. In fact, the need to harmonize hazard 

assessment in the global world has led to the determination of a series of standardized test 

for several activities, supported by institutions such as OECD and ISO. However, those 

methods have been traditionally used for chemical substances and are validated for 

traditional chemicals more than for materials. For some solid materials, a valid approach is to 

study the substances which are presented in solution, but this approach is insufficient when 

the particle size and structure is of relevance. NM physicochemical properties can lead to 

inconsistent toxicological outcomes, even when assessed using well-established in vitro 

models. These properties—such as high adsorption capacity, pH alterations, distinctive 

optical characteristics, surface charge, dissolution behaviour, magnetism, and catalytic 

activity—can interfere with both assay materials and detection systems used in toxicity 

evaluations. 

In vivo assays 
In vivo methods expose living animals/plants to the toxicant to assess their effects. They 

were commonly used in the past for a large variety of toxicological parameters, but their use 

is declining due to ethical concerns, and they are being substituted, when possible, for 

different methods, such as those called New-Approach Methods (NAMs). However, they are 

yet used in different fields. 

In vivo tests are the standard approach for ecotoxicity, and in particular for aquatic toxicity. 

As a general approach, different species are used to cover a range of several trophic levels. 

Commonly used species for algae are Chaetoceros gracilis or Phaeodactylum tricornutum as 

marine, and Chlorella sp. or Raphidocelis subcapitata as freshwater organisms. For 

invertebrates, the most common test organism for freshwater systems is Daphnia magna, 

and for marine systems the rotifer Brachionus plicatilis and the fairy shrimp Thamnocephalus 

platyurus are commonly used. As for aquatic vertebrates, fishes are the most common test 
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organisms in in vivo ecotoxicity tests, including species such as Danio rerio, Pimephales 

promelas, Cyprinus carpio, Poecilia reticulate, Lepomis macrochirus, Gasterosteus aculeatus 

or Oncorhynchus mykiss (freshwater), and Cyprinodon variegatus, Dicentrarchus labrax, 

Pagrus major, Acanthopagrus schlegeli or Lutjanus argentimaculatus (marine). Among those 

species, some are preferred for standardized tests and, for example, the OECD guidelines 

201 and 203 include a list of 5 algae and 11 fish species, respectively, with specific ranges of 

conditions for the test.  

In vivo tests for aquatic toxicity comprise acute exposures with relatively high concentrations 

over a short period of time, and chronic exposures with generally lower concentrations over a 

longer period of time. While acute tests are more straight forward in the interpretation of the 

endpoints (such as survival rate and growth inhibition), chronic tests allow the testing of 

sublethal concentrations of a toxicant and the corresponding endpoints (reproduction rate), 

which can be often trans-generational, due to the relatively short life-span of some laboratory 

test organisms (for example D. magna).  

For algae, bacteria and other microorganism, which naturally grow under test conditions in a 

defined medium, growth inhibition assays are applied which focus on the effect of the 

toxicant in the evolution of the population of a species. The most common example is the 

algae growth inhibition test, which is commonly used and standardized through guidelines 

such as the ISO 10253 [1] and OECD 201. For invertebrates, immobilization of the organism 

after acute exposure to a toxicant is often used as a proxy for mortality, showing the survival 

of a population after exposure. The most prominent acute test is the Daphnia immobilization 

test guided by OECD 202 [2], but also others such as the marine rotifer toxicity test guided 

by ISO 19820 [3] are applied. For fishes, the classical fish acute toxicity test is guided by 

OECD 203 and similar standards. However, this is being substituted by the use of zebrafish 

embryo, which are promoted as an alternative to the classical fish test and considered a 

NAM. Those tests have been used both for chemicals and nanomaterials. Finally, chronic 

effects are studied by using long term in vivo tests, such as the Daphnia magna reproduction 

test guided by OECD 211[4], or the Daphnia magna life-cycle toxicity test guided by ASTM 

E1193. 

Despite those tests are considered standard for chemicals, the application of those models to 

complex materials, particularly in the nano/micro scale presents specific challenges. Several 

processes affecting the structure of the material occur upon the release of them to the 

aquatic environment, such as aggregation, dissolution, sedimentation and changes on the 

ligands [5] Furthermore, the toxic effect of simpler components that can be released cannot 

be ignored. Therefore, it is recommended to consider the kinetics of the different dissolution 

processes. This not only affects the actual exposure concentration but can be related to 

changes in the bioavailability of the MNs in different aquatic organisms [6]. 

Despite their reduction, several in vivo tests involving different kind of mammals as models 

for human toxicity remain actively enforced and are commonly used. However, in some 

cases they are only required in certain conditions such as, for example, after an alternative in 

vitro test has been done and if the category (for example the annex in REACH regulation) is 

higher. An example of this are the tests for skin corrosion/irritation using animals, which are 

only considered if the production exceeds 10 ton/year and, even then, they are restricted to 
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cases where the in vitro results are not adequate/possible. However, in accordance to the 

scope of the project, we will focus in the cytotoxicity and genotoxicity.   

In those cases, the main advantage of in vivo testing is that it considers the systemic toxicity 

and the results are impacted by the toxicokinetics properties, which relate how the substance 

is absorbed to the body, distributed, metabolized and excreted. After the systemic exposition, 

the overall effects of the toxicant can be analyzed (for example in an acute toxicity test, 

focusing in animal mortality) and histopathological examination of the tissues can be used to 

observe the damage at the cellular level (similarly to in vitro tests). Research on gold NMs 

unveiled contradictory cytotoxicity results when in vitro or in vivo tests are used [7]. NMs 

potential to distribute along different body organs is being studied, and their complex 

behavior requires further analysis. 

Regarding the genetic damage, the European Medicine Agency (EMA) and ECHA 

recommend both in vitro and in vivo assays [8],[9]. Based on this recommendation, 

genotoxicity and mutagenicity may be assessed by the micronucleus test and comet assay, 

which are suitable to evaluate DNA damage both using in vivo and in vitro exposition [7]. The 

comet assay is commonly used in the in vitro approach (described above); however, it also 

can be performed in vivo by cell dissociation from the tissue [10]. 

In vitro assays 
In vitro techniques employ various cell types to evaluate the toxic effects of chemicals or 

materials upon exposure. The idea is to use cultured cells as a simple model for mechanistic 

studies to be related to more complex living tissues. Cells can be obtained from real tissue 

(primary cells) but commonly immortalized cell lines are used for practical reasons. Those 

cell lines are usually mutated cells which have practical advantages, such as the ability to 

proliferate and survive in in vitro conditions. It is documented that carcinoma cell lines, which 

are frequently used in laboratory settings for in vitro NM toxicity testing, exhibit different 

pathophysiological characteristics compared to healthy cells. Consequently, the toxicological 

data derived from such cell lines may not accurately reflect the response of normal cells, 

leading to potentially conflicting results. Hence, the use of cell lines for toxicity testing 

requires carefully consideration and validation.  

On the other hand, there are techniques used to mitigate the differences between in vivo and 

in vitro tests, such as microfluidic approaches, which enhance the mimmicking of the in vivo 

environment and provide conditions near to those in physiological contexts.  

The toxicity assessment of CNM using in vitro tests typically involves evaluating cytotoxicity 

and genotoxicity; which measure significant damage to the cells such as mortality or DNA 

damage. However, in addition to modelling overall toxicity, in vitro studies are also used to 

explore different adverse effects, as separate issues or as key events in the mechanistic 

study of toxicology. Some of these studies are not commonly used in regulatory toxicology, 

but are useful to understand toxicity and in the investigation of its mitigation. In these cases, 

the effect is often studied by analyzing the changes in the expression of one or more 

biological molecules  involved in the process. Examples of this studies include inflammatory 

response, and metabolic indicators of toxicity, such as the detection of reactive oxygen 

species formation, apoptosis, and DNA damage repair.  
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Must be noticed that those endpoints are not independent. For example, nanoparticles can 

also induce the generation of reactive oxygen species (ROS), which may alter mitochondrial 

enzyme activity, subsequently affecting the assay's final readout. Additionally, the absorption 

spectrum of reduced MTT is pH-dependent, and metal ions can disrupt the MTT reduction 

reaction. Furthermore, the inherent optical properties of NMs can interfere directly with the 

readout by increasing light absorption, as demonstrated by sodium titanate nanoparticles 

[11]. Considering those aspects in the experimental set-up is very important and curation of 

the data could require check how this was evaluated. For example, the protocols used in 

CMS for the gathering of primary data (WP3) include cell-free control tests and other 

mitigation measures to ensure the reliability of the data.  

Cytotoxicity refers to the ability of a substance to being toxic to the cells and it is mainly 

measured by assessing the cell viability (or number of surviving cells). There are several 

methods existing in the literature for this test, and a few of them are considered standard and 

offered as commercial kits.  

MTT assay is a colorimetric test for assessing cell metabolic activity. It is based on the ability 

of metabolically active cells to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) to an insoluble purple formazan product. Hence, the amount of formazan 

produced is proportional to the number of viable cells [12]. This assay has been used to 

assess the cytotoxicity of nanomaterials like aluminum oxide [13], copper oxide [14], multi-

walled carbon nanotubes (MWCNTs) [15], silver [16], zinc oxide and iron oxide in different 

types of human cells [11].  

XTT is another related assay for assessing cell viability and proliferation. In this case, it is 

based in the cleavage of 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-

carboxanilide (XTT) by dehydrogenase enzymes of metabolically active cells yields a highly 

orange colored formazan product which is water soluble [17]. This assay has been used to 

assess the cytotoxicity of nanomaterials like Silver, Cerium dioxide, Titanium dioxide [18], 

Silica [19] and Gold [20]. 

Other related assays include, for example, those related with water-soluble tetrazolium salts 

(WSTs) such as WST-1 and WST-8, which are reduced outside of the cell [21]. Among 

these, MTT is a positively charged compound that can easily penetrate viable eukaryotic 

cells, whereas MTS, XTT, and WST-1, being negatively charged, do not enter cells as 

readily. The interaction of NMs with these assay components can lead to variable results. For 

instance, carbon nanomaterials have been observed to interfere with these assays by 

interacting with the components or affecting the readout. 

On the other hand, the lactate dehydrogenase (LDH) assay is based in a cytosolic enzyme 

found in cells. When cells die or are damaged, the plasma membrane becomes permeable 

and LDH is released into the extracellular medium. Measuring the amount of LDH released 

into a cell culture can be used as an indirect way to quantify cytotoxicity. This assay has 

been used to assess the cytotoxicity of nanomaterials like TiO2 [22], SiO2 [23], copper and 

silver [24], MWCNTs [25]. 

Genotoxicity refers to the ability of a substance to cause damage in the genetic material of 

the cells. Different methods exist for genotoxicity, according to a recent review, most of the 
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results for metal oxide NMs correspond to Comet assay (137 of 165 publications analyzed), 

in comparison with Micronucleus (39), Ames (19) and Chromosome aberration (6) [26]. 

Comet assay consists of separating intact from fragmented DNA by agarose gel 

electrophoresis. Broken or relaxed DNA migrates toward the anode faster than undamaged 

DNA, such that a tail is formed that resembles a comet. The tail length and intensity are 

indicators of the level of DNA damage caused by the insult. The relative tail intensity (relative 

to tail plus head) yields a linear correlation with DNA breaks [27]. This assay has been used 

to assess the genotoxicity of nanomaterials like silver and Al2O3 [27], ZnO, TiO2 [28]. 

Micronucleus assay is used to detect chromosome damage by identifying micronuclei in 

interphase cells. It involves exposing cell cultures to a test substance and then observing the 

formation of micronuclei in cells that have completed nuclear division (micronuclei are formed 

during the anaphase of the cell cycle from lagging chromosomes or chromosome fragments 

occurring after chromosome lesions or after chromosome malsegregation) [27]. This assay 

has been used to assess the genotoxicity of nanomaterials like silver, Al2O3 [27], ZnO, TiO2 

[29] and fullerenes [30]. 

Chromosome aberration is another genotoxicity assay used to detect chromosome and 

chromatid breaks and other chromosome damage such as translocations as well as 

alterations in the number of chromosomes [27]. This assay has been used to assess the 

genotoxicity of nanomaterials like silver [31] and ZnO [32]. 

The Ames test is a method used for scoring gene mutations using bacteria. It is based on the 

appearance of colonies formed from amino acid-requiring mutants of Salmonella 

typhimurium or Escherichia coli in agar deficient in the amino acid required by the mutant 

tester strain used. These colonies arise from back mutations of the tester strains, which 

initially carry mutations in genes required for the synthesis of the respective amino acids [27]. 

This assay has been used to assess the genotoxicity of nanomaterials like ZnO and TiO2 

[27]. While most tests scoring for NM-induced genotoxicity lead to considerably great 

numbers of apparently genotoxic NMs, the Ames test yields mostly negative results. It 

appears advisable to normally refrain from the use of the Ames test for scoring the potential 

mutagenicity of NMs and to routinely prefer to use mammalian cell mutation assays instead 

[27]. 

As mentioned above, in addition of the standardized methods used commonly for regulatory 

applications, there are other methods based on the assessment of cellular processes related 

with the adverse effect. An example of these studies is the evaluation of the DNA damage 

through the measurement of the phosphorylated histone γH2AX, which has been detected to 

follow the DNA double-strand breaks and has potentially a role in its reparation, and thus is 

used to study genotoxicity.  This modification serves as a marker for DNA damage, 

facilitating the recruitment of DNA repair proteins to the damage site and allowing for 

visualization and quantification of DNA damage in cells. This assay has been used to assess 

the genotoxicity of nanomaterials like silver, aluminum oxide, gold and cobalt-chromium [33]. 

Another example of cellular process related cellular toxicity is apoptosis. Apoptosis is a 

natural and orderly process by which cells eliminate themselves from an organism. Unlike 

necrosis, apoptosis is not inflammatory and does not damage surrounding tissues. The 

assays to study apoptosis have been used both for chemicals and NMs, but not always are 
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devoted to assessing substance-induced apoptosis but also to evaluate therapeutic or 

combined effects. From the methods existing in the literature, we remark the following, 

because apoptosis is a complex process, different biomarkers appear along the process 

which facilitates the analysis of those on terms of time as early apoptosis (earlier stages in 

the process) and late apoptosis (later stages).  

Annexin V protein can be used as an early apoptosis assay. The detection of apoptosis using 

annexin V is based on the ability of this protein to bind to phosphatidylserine (PS), a 

phospholipid that is normally located in the inner leaflet of the plasma membrane in living 

cells. During the early stages of apoptosis, PS translocates to the outer leaflet of the 

membrane, becoming exposed on the cell surface. This early exposure of PS on the outer 

surface of the cell is a characteristic marker of apoptosis and can be detected using annexin 

V. This assay has been used to assess the apoptosis of nanomaterials like GdVO4:Eu3+, 

LaVO4:Eu3+ [34], polyurethane [35], CeO2 [36], silver [37],[38], TiO2 [39], silica [40], MWCNTs 

[41], Bi2O3 [42]. 

Detection of cleaved poly(ADP-ribose) polymerase (PARP-1) is used as a late apoptosis 

assay. PARP-1 is a 113 kDa nuclear enzyme which is cleaved in two fragments of 89 and 24 

kDa during apoptosis. Hence, this cleavage has become a useful hallmark of apoptosis [43]. 

This assay has been used to assess the apoptosis of nanomaterials like TiO2 [44], SiO2 

[45],[46], silver [47]. 

To evaluate cell inflammation, different chemokines (such as those of the IL family, TNF-α 

and MIP) are commonly used as biomarkers of the inflammatory process both to study the 

induction of inflammation and the anti-inflammatory properties of CNMs. These chemokines 

have been used to assess the inflammation of NMs like crystalline and amorphous silica, 

ZnO, titanium dioxide, iron oxide, zinc oxide, carbon nanotubes, fullerenes, and quantum 

dots [48],[49]. In addition of chemokines, microRNA has been found to be an active 

biomolecule in the inflammation mechanism, and particularly miR-146a has a key role and it 

is an excellent marker [50],[51]. Several studies use miR-146a to assess the ability of NMs to 

counteract inflammation [52]–[54]. However, the results of enzymatic immunoassays can be 

compromised if cytokines are adsorbed onto NM surfaces, as observed for IL-8 with carbon 

nanomaterials [55] and IL-6 with metal oxide NMs [56]. This aspect will be considered both in 

the experimental design and selection of data, for example by measuring the level of the 

biomarkers avoiding the direct contact with the NM and using replication techniques such as 

PCR.  

Reactive Oxygen Species (ROS) are unstable molecules that contain oxygen and are 

naturally formed as a product of cellular metabolism. While ROS play an important role in cell 

signaling and defense against pathogens, their excessive accumulation can lead to oxidative 

stress, which damages cells and contributes to various diseases. ROS toxicity in cells 

causes DNA Damage, proteins oxidation, cell membrane damage and apoptosis [57]. 2',7'-

Dichlorodihydrofluorescein diacetate (H2DCFDA) is a compound that penetrates cells and 

which is a chemically reduced form of fluorescein, used as an indicator of ROS within cells. 

For example, it can detect the generation of reactive oxygen intermediates in neutrophils and 

macrophages. Once the acetate groups are cleaved by intracellular esterases and the 

compound is oxidized, the non-fluorescent H2DCFDA is converted into 2',7'-

dichlorofluorescein, which is highly fluorescent. This assay has been used to assess ROS 
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concentration caused by NMs like Gold [58], Nickel Ferrite [59], Silica [60], TiO2 [61], Iron 

Oxide [62], Silver [63], Cerium Oxide [64], GdVO4:Eu3+, LaVO4:Eu3+ [34]. 

In chemico 
A third family of experimental assays are those called in chemico which study chemical 

reactivity of compounds without the need of any cell. For example, the reactivity of a 

chemical with a particular protein can be measured extracellularly or physicochemical 

properties can be used to estimate biological effects. However, this are often not 

differentiated of in vitro studies as, for example the Ocular Irritection® test for eye, which is 

labeled as an in vitro test in the OECD guideline 496 and several sources. Those studies are 

less common and none of them have been found relevant for the endpoints under main 

consideration and thus, they are included for completion but specific discussion on those 

methods is not provided. 

In silico modelling  
In silico approaches are commonly used by chemoinformaticians in several fields to predict 

relevant properties of chemical substances. For example, they are broadly used in the drug-

discovery and toxicology fields to predict the toxicity and biological activity of chemicals. In 

general, computational predictions are faster and less costly than experimental tests 

(particularly once a model has been developed and validated). The cost reduction is even 

more significant compared with in vivo tests, with the additional benefit of decreasing the 

number of animals required and, thus, contributing to the general effort to reduce, refine and 

replace them for ethical reasons (known as the 3 Rs). Furthermore, computational 

approaches present a benefit in the development and design phases, as they allow the 

prediction of properties for unsinthetized or even hypothetical substances. 

In this field, QSAR is one of the most commonly used methodologies, due to its advantages 

such as easy application, potential for mechanistic interpretation and statistical validation. 

Those models are based in finding quantitative relationships between the structure of a 

chemical and its properties. Thus, a key component is to describe the structure as a series of 

numerical descriptors that represent it. QSAR models for organic chemicals are a mature 

technology widely accepted for regulatory bodies and with hundreds of commonly used 

public and commercial models. However, the evolution to the QSAR methodology to be 

applied to materials and, in particular, to NMs is a newer advance and an active field of 

research. Their advance is hindered due to the intrinsic difficulty of the structural 

characterization of the structure of the material which leads to the lack of quality data 

available to their generation.  

There are several adaptations to QSAR models in order to apply them to nanomaterials, 

which we will as nanoQSAR in this deliverable; even if they have received other names such 

as Quantitative Nanostructure-Activity Relationship (QNAR), Nano-QSAR, NanoSAR, Nano-

QFAR, etc. The first described nanoQSAR model is from 2009 [65], but the number of 

nanoQSAR relevant models is growing significantly [66]–[70]. One reason of their expansion 

is the exploration and design of new descriptors adapted to the materials structure and the 

inorganic nature of most NMs. Another reason is the progressive generation of much more 

experimental information on NMs and the efforts in the harmonization of the characterization 

and assessment methods, with aims to their application at regulatory level. 
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A review of in silico preexisting models in the toxicity of NMs was done and a series of 

models is summarized in the Table 1. The data in the table mainly refers to nanoQSAR 

models (including advanced multi-target models and perturbation approaches), but other in 

silico approaches such as Bayesian networks are also included.  

Table 1.  List of papers with relevant computational models for nanomaterials 

Endpoint Target MOx Metal Carbon 
based 

Mixture 
/other 

Apoptosis Multiple       [71] 

Cell Viability Human [72]–[79] [79] [74],[80],[
81]  

[74],[75],[8
2]–[85] 

Porcine - - - [85] 

Murine [74],[76],  - - - 

Multiple [86] - - [87] 

Cell Uptake Human  [71],[88]–[90] - - [80] 

Cytotoxicity Bacteria [65],[80],[91]–[109]  - - [80] 

Human [97],[100],[101],[103],[105
]–[116]  

[117] -  [118],[119]  

Murine [101],[111],[112],[114],[11
7],[120],[121] 

[117]  -  [119]  

Virus - - [122],[123
] 

- 

Daphnia magna [124] - - - 

Saccharomyces 
cerevisiae 

- [125] - - 

Fish - [126] - - 

Ecotoxicity Multiple [127] [127]     

EZ metric Danio rerio - - - [128] 

Genotoxicity Multiple [129],[130]  - - - 

Immobilization  Daphnia magna [131] [131] - [131],[132] 

Inflammatory 
potential 

Human [133] - - - 

Interaction 
energy 

SARS-Cov-2 - - [134] - 

Luciferase Murine [135]  [135] - - 

Membrane 
damage 

Human [136] - - - 

Mutagenicity  Bacteria - -  [137]–
[140] 

- 

Oxidative 
stress 

Human [141] - - - 

Photodegradati
on 

Murine [120] - - - 

Multiple [102] - - - 

Toxicity Human - - - [88] 

Multiple [127],[142] [127],[
142] 

- - 

Danio rerio [100] - - - 

Aliivibrio fischeri [143] - - - 

 Hatching 
Enzyme ZHE1 

Danio rerio [69] - - - 
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Zeta Potential Human [144] - - - 

Multiple [102] - - - 

 

Regarding the predicted properties, most published models are devoted to toxicity in 

humans, modeled using in vitro approaches with targets such as bacteria and mammal cells. 

In this case, the most common endpoint is cytotoxicity, but also many genotoxicity studies 

are found. Regarding environmental endpoints 3 publications in Daphnia magna, 1 in 

zebrafish and 4 with different targets). Related to the parameters studied in WP3, we have 

also identified predictive models focused on the inflammatory and oxidative potentials. On 

the other hand, a few examples of nanoQSAR models relating other properties are found, 

such as bioactivity against virus (protein binding) and physicochemical properties [66].  

Regarding the composition, most of the models are based on metal oxides (MOx), both 

solely or as a part of a wider dataset. Noble metals are also commonly found, but in those 

cases it is common to find that the focus is on the coating and not in the compositions. Other 

core components found in publications are SiO2, Cd-based quantum dots (QDs) and carbon-

based inorganic materials such as fullerenes, carbon nanotubes and graphene flakes [66]. 

We did not find any model regarding biodegradability for nanomaterials, despite identifying a 

few publications regarding modelling that include relevant keywords. However, 

biodegradability is not among the predicted properties but, in some cases a general 

comment about the properties of the materials included in that particular study. This is not 

unexpected because the models in materials are usually focused in particular families and 

thus usually only inorganic materials are considered. However, biodegradability cannot be 

directly applied to those materials as biological degradation is not expected, even if the 

materials can be removed of the media (for example by aggregation, dissolution or 

passivation of the surface). The biodegradability of inorganic carbon-based NMs such as 

fullerenes and carbon nanotubes and organic polymers such as cellulose has been 

investigated experimentally, confirming that only the organic ones were readily 

biodegradable [145].  

Finally, in addition to the analysis of the publications, that are the vast majority in the field, we 

have search for QSAR models available as computational tools (online servers and tools). 

There is a significant amount of commercial and free services that use QSAR models to 

predict different properties for molecular substances. Vega, Danish (Q)SAR  

Table 2. Summary of available QSAR software for molecular chemicals 

Software Predicted properties Link 
  

ProtoPRED Phys-chem, environmental fate and 
distribution, toxicokinetics, 
ecotoxicity and human toxicity 

https://protopred.protoqsar.com/ 

Vega Phys-chem, environmental fate and 
distribution, toxicokinetics, 
ecotoxicity and human toxicity 

https://www.vegahub.eu/portfolio-item/vega-
qsar/ 

TEST Phys-chem, ecotoxicity and human 
toxicity 

https://www.epa.gov/comptox-tools/toxicity-
estimation-software-tool-test 

KATE Ecotoxicity https://kate.nies.go.jp/ 

MLTOX Phototoxicity & genotoxicity https://mltox.fiit.stuba.sk/ 
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EPISUITE Phys-chem, environmental fate and 
distribution 

https://www.epa.gov/tsca-screening-tools/epi-
suitetm-estimation-program-interface#what 

ADMETlab Phys-chem, toxicokinetics and 
human toxicity 

https://admetlab3.scbdd.com/server/screening 

STopTox Human toxicity https://stoptox.mml.unc.edu/ 

DanishQSAR Environmental fate and distribution, 
toxicokinetics, ecotoxicity and 
human toxicity 

https://qsarmodels.food.dtu.dk/ 

ECOSAR Ecotoxicity https://www.epa.gov/tsca-screening-
tools/ecological-structure-activity-
relationships-ecosar-predictive-model 

 

However, in the case of nanomaterials, there are very few tools available. We have compiled 

a list of predictive models for (nano)materials which are available online in different 

platforms: 

- ProtoNANO (https://protopred.protoqsar.com/ProtoNANO_info) 

ProtoNANO is the NM-focused module of ProtoPRED (a prediction platform owned by 

PQSAR). This module offers some nanoQSAR models developed as part of a MSCA-IF 

European Project (NanoQSAR) related with different endpoints such as cytotoxicity (in 

bacteria, human cells and tumoral cells), zeta potential and partition coefficient.  

- Online chemical database (OCHEM): https://ochem.eu/ 

This database includes a modelling environment and allows users to share their models. 

Despite data in OCHEM is basically based in organic molecular substances, 15 different 

models have been found identified as NM-based, all of them related with aquatic toxicity. 

However, some are alternative approaches to the same property, and thus share a 

database, so the number of real different endpoints and reusable data is less.  

- NanoSolveIT (https://nanosolveit.eu/resources/tools-services/) 

As part of this H2020 project devoted to the toxicity of nanomaterials a series of tools were 

developed, including tools related to study the exposure and uptake of nanomaterials. 

Regarding the parameters of interest, there are two nanoQSAR models for the cytotoxicity of 

metal oxides: a regression model that predicts cell viability values and a qualitative model.  

The quantitative model focuses on ATP or LDH assays (being the assay a descriptor that 

affects the prediction). In both cases, the models are trained with data on BEAS-2B and 

RAW 264.7 cells (plus E. coli for the qualitative). In all cases the model requires a significant 

amount of data in addition to basic characterization such as size, such as the chemical 

potential, enthalpy of formation and energy of the conduction band. Although there is a tool 

related to the toxicity to Daphnia magna, this is not related with the scope of this review, as it 

is an image detection. 

- Enalos Cloud (https://www.enaloscloud.novamechanics.com/all.html) 

Enalos Cloud is a server with different computational tools, including a few devoted to 

nanomaterials such as a constructor of unique identifiers for nanomaterials (NInChi), tools to 

prepare geometries for atomistic models and models that obtain descriptors from images. 

Regarding toxicity prediction, it provides several models including the models discussed 

above for NanoSolveIT. As examples, there are read-across approaches for ecotoxicity of 
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silver, TiO2, and Ag2S nanoparticles identified by their charge, tested media, TEM and DLS 

sizes and the concentration. Finally, it has a model for iron-based nanoparticles based in 

experimental descriptors such as the relaxivities  and zeta potential. 

- NanoDesk (currently unavailable) 

NanoDesk, a finished Interreg-Sudoe European project, produced a platform to grant access 

to their outcomes, including a QSAR online tool and access to the datasets. The platform 

included different models for genotoxicity, cytotoxicity (LC50), cytotoxicity (LOEL), 

bioaccumulation in Daphnia magna and a cytotoxicity model combining 5 endpoints (CC50, 

EC50, IC50, LC50, TC50). Unfortunately, the webservice is no longer accessible but we had 

access to the data. From this project, a dataset was compiled with 3320 cell viability values, 

171 genotoxicity values, 68 ecotoxicity values and 658 physicochemical properties values, 

mainly for metal oxides.  

Selection of parameters and data 

availability  
Summarized results of the data mining process  

Data-based models, as those proposed in WP5 are built from the information obtained from 

previous, validated experimental data. Thus, compiling and curating data is an essential task 

that will expand along the model development process. In this section, we summarize the 

findings of the first phase of the overall data-mining process, focusing in the selection and 

compilation of data to be used to develop models in the WP5. 

The objective is to explore the vast amount of potential toxicity data, including several 

sources and potential parameters, to finally define a few curated datasets for particular 

models. Hence, it can be described as a 3-step process where successively we filter the 

information to respond a particular question (Figure 1).  In first place, the parameters of 

interest are selected based on the potential interest for modelling and the adequacy to the 

project objectives. In second place, data is filtered according to the experimental conditions 

reported and the adequate tests. Finally, a subset of consistent data (same value and units) 

is selected and curated for model development.  

Figure 1. Graphical representation of the steps for selecting the parameters to model 

 

Parameters

A property or 
biological activity

Cytotoxicity

Selected by 
regulation and 
project objectives

Tests

Experimental 
conditions

MTT assay in 
EA.hy927 cells

Selected in basis to 
data availability

Endpoints

Particular value 

EC50 (different cells)

Compromise data 
consistency and 
quality

Models
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In this section we will describe the sources and methods used for data-mining and discuss 
the progress up to this moment for each of the selected parameters. Even if additional data 
can be gathered for modelling purposes, the discussion about data availability and variability 
at this point will be useful to guide our efforts and focus on more promising models.  

Data sources / Methodology 
The data mining process has consisted in compiling information on different data sources, 

including curated databases and scientific publications.  Databases search include both 

general databases with a clear majority of chemical data and other that are focused in 

nanomaterials. Because the CMS project includes the collection of a database as part of 

WP7, database analysis did not always include the compilation of data, but just its analysis in 

basis to summary information and or preliminary queries. The actual compilation and 

management of the data is planned to be performed in collaboration with WP7.  

Collection of relevant publications have combined the exploration of documents provided by 

the partners project involved in the selection of the materials in WP2 and the search of new 

publications in scientific searchers such as Google Scholar, Scopus, PubMed and 

ScienceDirect.  A wide range of keywords have been used including information about the 

kind of materials (such as nanomaterials, nanoparticles, nanoform, TiO2, cellulose, silver, …) 

including full words, common abbreviations and chemical formulas. On the other hand, the 

different parameters have been searched both by using broad terms (toxicity, genotoxicity, 

apoptosis), as well as including the assay name (Comet, MTT, micronucleus) or key 

chemicals involved in the test (PARP). Additional keywords have been used to deeply 

explore certain endpoints such as particular cell types and organism species.  After revision 

of several publications, a list of papers has been selected as potentially including relevant 

data or key information for modelling the selected parameters (further details below).  

In addition to the keywords necessary to identify that the assay corresponds to parameter of 

interest. For example, in some cases additional filters have been required to identify the role 

of the substances as toxicity inducers or inhibitors/protectors. That difference has a potential 

relevant for our analysis because the characteristics of the experimental studies are very 

similar, but the ability of the inhibition data to train models to predict toxicity is not clear. On 

one hand, all the studies are relevant to discuss the availability of the techniques, as they are 

commonly used to assess the adverse effect. On the other hand, treatment-targeted studies 

which often (a) combine different substances in the same test and (b) use very active 

toxicants in large doses as toxicity inducers. Meanwhile this data could be used for modelling 

inflammatory potential in the presence of an inducer, it is not applicable to model the direct 

inflammation caused by CNMs. 

Overall data availability  
In the first place, a global search of available scientific literature on the parameters of interest 

has been performed.  Several searches were done to explore the field, but as a summary of 

the process, the number of publications found in a series of searches in PubMed are 

presented in  

Table 3. In this first approach, we have not explored the kind of chemical or material involved, 

but how the parameter was measured using a general keyword for the parameter plus 

additional keywords to specify the assay type. In addition of the general results, we have 
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refined the search by adding cell lines such as EA.hy926, U-937, HUVEC, HepG2 and A549. 

This list includes the cells selected for performing the experiments in CMS, in basis to their 

quality, reliability and adequacy for the adverse effects studied. It also includes data related 

to primary HUVEC cells, as they are endothelial cells to which the EA.hy926 cells are very 

similar. Due to its stability and other properties, the hybrid EA.hy926 is the best option for 

testing, but the availability of preexistent data is limited. For comparison, we have also 

included a couple of tumor-based cells which have been commonly used for bioassays, but 

that are not adequate for the toxicity and mechanistic studies proposed in CMS.   

Table 3. Number of publication in PubMed 

Parameter Test  Any EA. 
hy926a 

U-937b HUVEC HepG2 A549 

Cytotoxicity 
  
  

-- 403182 147 1948 1950 10155 11797 

MTT 24216 24 167 307 1863 1919 

XTT 820 - 14 5 34 31 

Genotoxicity 
  
  

-- 41263 6 6 52 887 557 

Comet 6681 3 1 21 420 211 

Micro-nucleus 6696 1 - 8 255 92 

Apoptosis 
  
  

Annexin 22689 22 275 331 734 958 

PARP 13278 10 202 113 451 617 

-- 602203 214 3519 4514 9557 1231 

Inflammationd 
  
  

-- 1635507  304 2549 5144 3370 4439 

TLR4 20473 6 99 152 81 106 

IL6 131129 65 412 938 593 896 

MiR-146 157 1 1 4 - 1 

IRAK1 838 - 6 14 6 8 

ROSe  
  

--  414660  253  868  2860 4443 3656 

H2DCFDA  2819  10 17 77   55 70 

A Search by EA.hy926 or hy926  

B Search by U-937 or U937 

C Search by apoptosis or apoptotic 

D Search by (inflammation or inflammatory) 

E Search by ROS or “oxidative stress” 

 

Similar searches were done also in Google Scholar and Scopus, which provided analogous 

searches. Both sources provided more publications than PubMed, for example the search for 

cytotoxicity using MTT in any cell provides 24216 publications in PubMed but 85543 in 

Scopus and 376000 in Google Scholar. Similarly, if PubMed did not identify any publication 

with XTT and the EA.hy926 cell, 7 publications are found in Scopus and 333 in Google 

Scholar. As seen in this example, the relative proportion of data among different searches is 

similar to that show in the table above, so such detail is not presented here. Must be noticed, 

however, that the larger amount of information provided (particularly in Google Scholar) 

implies the need to apply more strict filters to sieve useful data (for example with specific 

searches for material types or additional testing details) and, nevertheless, several papers 

including the keywords in a non-relevant way are found and it requires the human inspection 

of the papers. Nevertheless, because these sources provided more data, they have been 

used for searching most of the publications discussed along this text, using a larger variety of 

keywords and filters than those explicitly discussed in this deliverable.  
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The results of this research show the number of publications related to the field, but do not 

ensure that those publications can provide useful data for modelling, as it would require 

case-by-case analysis of the publications.  They are several reasons for a publication do not 

provide useful data including the following kind of publications: 

- Papers with a qualitative discussion of the mechanism but not specific data 
- Papers that explored adverse effects in very specific conditions, including 

combination of different substances, cells, infections and other effects in the same 
study 

- Papers devoted to the study of treatments and therapeutical approaches which do not 
provide relevant untreated, toxicity data. 

- Papers with results of a different parameter/test/cell but that include discussion 
regarding the searched one as alternative  

- Reviews (which could provide curated data, but duplicate with primary sources) 
- Papers that have been retracted or use deprecated methodology 

Hence, data from papers is challenging to compile and analize, and it is more prone to lead 

to inconsistent databases and errors. Thus, we also performed searches in databases which 

allow the retrieval of curated data and, in some cases, include specific fields for the cell-line 

and other parameters, such as our first example: the ChemBL database.  The data 

presented in Table 3 relates with the search in ChemBL by bioassays and the number of 

compounds is the aggregated raw data of the search (note that this is not curated and it 

could include duplicate or inadequate values).  

For each assay, an initial search has been done in basis to keywords related to the assay 

(for example, “comet” for the genotoxicity comet assay and “H2DCPFA” for the ROS test) 

and the aggregated number of compounds is labeled as “all compounds”. Then, a second 

manual step was applied to remove those tests related to inhibition and/or protection assays, 

by reading to the description (as well as other assay descriptions which seem to be not 

adequate) to select only the bioassays that study the hazard induction. In Table 3, it can be 

noticed that there is a significant reduction of the data, particularly for the inflammation tests, 

which are mostly for anti-inflammatory studies. Despite the same method can be used to 

both aims, as it is a valid study of the inflammation, data regarding treatments is not useful 

for modelling, as the inducer of the damage is often selected among a handful of options and 

it is applied in high doses. Filtering by cell lines reduces significantly the results and for 

several of the cell-line/test combination no results are found in this database.  

Table 4: Preliminary results of data mining in ChemBL 

Parameter Test (keyword) All compounds Compounds 
hazard 

Bioassays hazard 

Cytotoxicity MTT 554806 337225  38200 

 XTT 20012 8840 1034 

Genotoxicity Comet 856 769 414 

  Micronucleus 532 350 249 

ROS H2DCPFA 1094 843 297 

Apoptosis Annexin 113 103 66 

  PARP 2541 2433 1601 

DNA damage H2AX 756 478 272 

Inflammatory TLR4 2199 114 32 

  IL6 9308 651 156 

  mR-146 1463 342 58 
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  IRAK1 2118 1550 29 

In summary, it can be observed that the availability of data is very variable depending on the 

search. However, in all cases, even if there is a significant amount of data on those 

properties, it is not commonly found with the cell cultures proposed. For example, even if the 

general availability of cytotoxicity data looks huge, when the test and cell-line is restricted it 

decreases significantly.  

The same trends were found in other data sources. A similar search in PubChem was 

performed but for most of the cases only data from ChemBL was found and not significant 

differences were appreciated in the relative amount of data.  On the other hand, a search in 

the online chemical database ochem.eu, only finds 8 values related to U937 cells, and those 

are values for IC50 against cell proliferation. In that case, no values were found for the 

EA.hy926 cells. Otherwise, removing the cell filter, we obtained 441 cytoxicity records 

(related to cell lines such as SHSY5Y, SK-N-MC and NB1). 

 

Regarding the ecotoxicological endpoints, we also conducted a search (Table 5) for various 

organisms in the ChemBL database, the REACH database from ECHA (retrieved through 

QSAR Toolbox, https://qsartoolbox.org/) and in ECOTOX from the EPA 

(https://cfpub.epa.gov/ecotox/explore.cfm). This search shows that most of the available data 

is related with D. magna and that, for those endpoints, regulatory-based databases such as 

those from ECHA and EPA have more data. 

Table 5. Data availability of toxicological data regarding different aquatic species  

Species ChemBL REACH ECOTOX 

Tetrahymena thermophila 75 28 1263 

Brachionus calyciflorus 49a 5315 1912 

Thamnocephalus platyurus 4 76 326 

Selenostrum capricornutum 39 356 1122 

Daphnia magna 75 59079 35636 
a The search was done by the phylum (rotiphera), as data was not recorded by the species. 
  

However, most of this data is based on organic molecular compounds, and WP5 modelling 

involves also a series of nano and micromaterials (both organic and inorganic). Thus, 

additional exploration of nanomaterial-based databases was done and a summary of the 

results are presented in Table 6. Data from different EU-funded projects was gathered using 

the eNanoMapper platform. NanoE-Tox data, collected by the National Institute of Chemical 

Physics and Biophysics, was obtained as an spreadsheet supporting its publication.[146] 

Table 6. Data availability for different materials classes in the databases 

Source Cytotoxicity Genotoxicity ROS Inv. Algae 

eNanoMapper TiO2 (298), 
Ag (50) 

 TiO2 (334), 
Ag (62) 

TiO2 (210), 
 

 

NANoREG* TiO2 (2250), 
Ag (1788), Cell. 
(161), 
Chem (84) 

 TiO2 (1943), 
Ag (1243), 
Cell. (183), 
Chem (113) 

TiO2 (72), 
Ag (8) 

 
 
 

anoReg2* TiO2 (266),  
Ag/Au (98) 

 TiO2 (4),  
Ag/Au (19)  

TiO2 (1), 
Ag/Au (363)  

 
 

caLIBRAte* TiO2 (37),  
Ag (18), 

 TiO2 (6),  
Ag (19), 

Chem(7)  
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Chem(761) Chem(20) 

GRACIOUS* Chem (774)   Chem(593)  

NanoE-tox    TiO2 (118), Ag 
(149),  
NM (167) 

TiO2 (41), 
Ag (8),  
NM (120) 

 

Abbreviations: Cell.: Nanocellulose, Chem: Chemicals, NM: Other NMs  

Italic values in the cytotoxicity column correspond to Cell viability. 

* Accessed through eNanoMapper 

 

Analysis of the data availability by parameter 
In this section, we briefly present a summary of the data found for the parameters to be 

studied and present a table with the most relevant data sources, classified according to 

different aspects such as the kind of CNM, the assay conditions or the specific kind of data 

available (endpoint). 

Table 7. Summary and classification of data sources regarding cytotoxicity 

Criteria Class Papers Databases 

Material Metallic  [21],[147]–[160]  eNanoMapper, NANoREG, 
NanoREg2, CaLIBRAte 

 Polymers [149],[161],[162]  

 MOx [160] eNanoMapper, NANoREG, 
NanoREg2, CaLIBRAte 

 Cellulose [163]   

 Chemicals [164] ChemBL, NANoREG, 
CaLIBRAte, 
GRACIOUS 

Test MTT [21],[148],[157],[158],[164],[165]  eNanoMapper 

 XTT [150],[166]  

 Other/not-
identified 

[155],[159] NANoREG, NanoREg2, 
CaLIBRAte 

Endpoint Cell viability [158],[166],[167] NANoREG, NanoREg2, 
CaLIBRAte 

 EC50 [21],[148],[150] [149],[161],[162]  

    

Cell line VK2-E6/E7 [155],[158]  

 GMK-AH1 [159]  

 EA.hy926 [150],[168],[169]  

 U-937 [166]  

 Hep2G [149],[161],[162]  

 HUVEC [167]  
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Table 8. Summary and classification of data sources regarding genotoxicity 

Criteria Class Papers Databases 

Material Metallic  [21],[170] eNanoMapper, NANoREG, 
NanoREg2, CaLIBRAte 

 Polymers - - 

 MOx [21],[147],[171]–[173] 
 

eNanoMapper, NANoREG, 
NanoREg2, CaLIBRAte 

 Cellulose - - 

 Chemicals [174]–[179]  
 

ChemBL, NANoREG, 
CaLIBRAte 

Test Comet [21],[148],[150],[180]–
[182]  

 

 Micronucleus [183],[184]   

 Ames [175],[183]–[185]   

Endpoint Binary 
classification 

: [182],[186],[187] 

 
 

Cell Caco2 [21]  

 HepG2 [21]  

 BEAS-2B [147],[188]  

 SH-SY5Y [171],    

 U-937 [150],[180]  
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Table 9. Summary and classification of data sources regarding oxidative stress 

Criteria Class Papers Databases 

Material Metallic  [58],[60],[63] NanoREG, NanoREG2, GRACIOUS  

 Polymers [61],[189]  

 MOx [34],[59],[61],[62],[64] NanoREG, NanoREG2, GRACIOUS  

 Cellulose [189]–[191]  

 Chemicals [61] NanoREG, NanoREG2, GRACIOUS, 
ChemBL 

Test H2DCFDA [34],[58]–[64],[190],[191] NanoREG 

 Oxiblot® kit, Merck  NanoREG2 

 NRF2ACTIVATION  GRACIOUS  

Endpoint PERCENTAGE_OF_
CONTROL 

 NanoREG, NanoREG2 

 IC50  NanoREG 

 CARBONYLATION  NanoREG2 

 LUCIFERASE_ACTI
VITY  

 GRACIOUS  

Cell A549 [58],[59] NanoREG, NanoREG2 

 THP1  NanoREG 

 CACO-2  NanoREG 

 3T3  NanoREG 

 HepG2  NanoREG, ChemBL 

 NRK-52e  NanoREG2 

 HEK293  GRACIOUS  

 HUVEC [60]  

 

Table 10.  Summary and classification of data sources regarding inflammatory response 

Criteria Class Papers Databases 

Material Metallic  [166],[192] NanoReg 

 Polymers [193],[194] NanoReg 

 MOx [166],[195] NanoReg 

 Cellulose [196] NanoReg 

 Chemicals [168],[169] NanoReg 

Marker IL-1 [166],[192],[194],[197] NanoReg 

 IL-5 [196]   

 IL-6 [155],[159],[168],[169],[194],[195],[198] NanoReg 

 IL-12 [196] NanoReg 

 IL-10  NanoReg 

 IL-8 [169],[193]  

 TNFa [159],[166],[168],[192],[194],[197],[198] NanoReg 

 PGE2 [192]  

 MIP1 [196]   

Endpoint Marker 
concentration 

[168],[192],[194],[197]–[199] NanoReg 

Cell pBMEC [192]  

 Microglial cells [195]  

 HaCat [155]  

 VK2-E6/E7 [155]  

 A549  NanoReg 

 THP-1  NanoReg 

 RAW 264.7  NanoReg 

 EA.hy926 [168],[169],[193],[197],[199]  

 U-937 [166],[194],[198]  
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Table 11. Summary and classification of data sources regarding apoptosis 

Criteria Class Papers Databases 

Material Metallic  [200]–[204]  

 Polymers [205]  

 MOx [206],[207]  

 Cellulose   

 Chemicals [202],[206],[208]–[211] ChemBL 

Biomarker Annexin-V [200]–[202],[209],[210] ChemBL 

 PARP  ChemBL 

Cell EA.hy926 [200]–[202],[205],[209]  

 U937 [203],[203],[206]–[208],[210],[211]  

 

Table 12. Summary and classification of data sources regarding aquatic invertebrates 

Criteria Class Papers Databases 

Material Metallic  [212]–[216] NanoReg , NanoE-Tox 

 Polymers [217],[218]  

 MOx [219]–[223] NanoReg, NanoReg2, NanoE-Tox 

 Cellulose   

 Chemicals [215],[216],[224]–[229] NanoReg, NanoReg2, ChemBL 

Species Brachionus 
calyciflorus 

[213]–
[215],[218],[222],[223],[225],[
226] 

ChemBL 
NanoE-Tox 

 Thamnocephalus 
platyurus 

[216],[227]–[230] ChemBL 
NanoE-Tox 

 Daphnia magna [212],[214],[217]–[221],[226] NanoReg, NanoReg2, ChemBL, 
NanoE-Tox 

Endpoint EC50 [212],[219],[221] NanoReg, NanoReg2 

 EC10 [213],[219],[220] NanoReg2 

 LC50 [212]–
[214],[216],[217],[221],[222],[
225]–[230] 

NanoReg 

 Long-Term [212],[219],[220],[224]  

 

Table 13. Summary and classification of data sources regarding growth inhibition of algae and related 
species.  

Criteria Class Papers Databases 
 

Material Metallic  [231]–[237] NanoReg, NanoE-Tox 

 Polymers [232],[238]  

 MOx [231],[232],[238]–[241] NanoReg, NanoReg2, NanoE-Tox 

 Cellulose   

 Chemicals [232],[234],[236],[239],
[240],[242]–[249] 

NanoReg, NanoReg2, ChemBL 

Species Tetrahymena 
thermophila 

[232]–[234],[237]–
[239],[242]–[244] 

ChemBL 
NanoE-Tox 

 Selenastrum 
capricornutum 
(Raphidocelis 
subcapitata/ 
Pseudokirchneriell
a subcapitata) 

[235],[236],[240],[241],
[245]–[249] 

NanoReg, NanoReg2, ChemBL 
NanoE-Tox 

Endpoint EC50 [231],[242]  NanoReg, NanoReg2 

 EC10  NanoReg, NanoReg2 

 LC10  NanoReg 

 LC50 [239] NanoReg 
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 IC50 [233]–
[238],[240],[241],[243]
–[249] 

 

Conclusions and modeling plan 
Main conclusions of the data review and consequences for the research plan 

In this deliverable we have reviewed the literature regarding experimental and computational 

assessment of toxicity and biodegradability of chemicals and, particularly, materials in the 

nanoscale. After the revision of the data discussed above, we reach a series of conclusions 

that can be summarized in the following principal points: 

- Data availability varies significantly among parameters 

There is a big difference in the availability of data for the main toxicological endpoints, such 

as cytotoxicity, genotoxicity and ecotoxicity, and other endpoints such as apoptosis and 

inflammation. A potential cause, is that meanwhile some toxicological parameters are 

commonly requested for regulatory purposes by ECHA, EFSA, EMA and other institutions, 

other studies are mainly devoted to the scientific assessment of mechanistical toxicology 

and therapeutic applications. The existence of the later approach (evaluation of therapeutic 

effects) has a huge effect in data quantity and quality. Because the methods to study hazard 

and potential hazard mitigation are the same, there is a larger number of data sources 

available, but not all the information is relevant to create a database regarding toxic effects.  

- Data for NMs is more difficult to obtain, and requires a more thoughtful curation 

The data-mining efforts confirm the hypothesis that NMs data is significantly scarcer. There 

are less databases related to nanomaterials and, in general, there is no data on those 

materials in classical databases. Even sources with potential nanoscale data cannot be 

obtained from those sources, as the characterization of the materials is not properly 

documented. For example, ECHA database includes particle size information, but 

nanoforms are not labeled separately. Hence, it is not straightforward to stablish a reliable 

link between which activity data correspond to each particle size. 

On the other hand, there is no a systematic approach for characterization. For example, 

almost all sources in nano- and microparticles includes the size; but several different assays 

can be used, not always comparable as there are significant differences between them.  

- In vitro data is very variable in terms of cell-lines and assay conditions.  

For all the parameters under discussion, we have searched the availability of data for several 

conditions, including the general overview and specific conditions. In general, we have 

observed a significant variance among the cell lines used for testing, including those selected 

in the WP3 and other options. The revision of the state of the art suggest that the cell line 

could have a significant effect, but the lack of consistency makes impossible to gather a 

single-cell database. On the other hand, the differences among assays are more significant 

and the most common approach is to prepare single-test models. Thus, these two factors 

should be of relevance in the development of models and they will require a deep analysis of 

the preexistent and generated data. This task, in fact, expands to WP3, whose experts will 
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also have in consideration this analysis to guide and assess the selected techniques, as well 

as provide guidance in the pros and cons of the different cell-lines and assays and the main 

characteristics required to assess the reliability and usability of data for modeling. In this 

sense the CMS action will serve to collate a primary database of very consistent toxicological 

data for a diverse family of chemicals and materials, which is a key requirement for better 

modeling.  

In conclusion, the modeling plan for WP5 has been designed in the following way. It must be 

noticed that this is a plan that can be revisited during the progress of WP5 depending on 

further data acquisition, preliminary modelling and new scientific findings inside or outside 

the consortium.  Also, the plan is not a restricted list of models to be performed but a 

prioritization of interesting endpoints. 

A first impact of the data-mining process in the modelling plan is that it has confirmed that 

selecting the appropriate data is not a simple task. On one part, there is no single, massive 

databases that can be used, particularly for materials, and thus it would require analysis of 

publications and collection of data from different sources. The step of selecting and curating 

the data is essential in all the modelling tasks and it would be necessary the cooperation of 

different partners to understand the complexity and variety of data and to select the adequate 

data. Additionally, statistical techniques and preliminary modelling steps will be performed to 

assess the potential of different curation criteria. 

Regarding task 5.3, the in silico models for nanomaterials and chemicals, the priority will be 

given to models for the direct toxicity parameters, which seem to have more consistent and 

available data. Those parameters are: 

- Cytotoxicity 
- Genotoxicity 
- Algae growth inhibition 
- Invertebrate acute toxicity  

In all cases, the data will be selected to be compatible with the results provided by WP3, but 

not limited to those in order to have better databases. In this sense, the effect of including 

external data related with alternative target cells/species in the modelling database, will be 

also evaluated. This would increase the data availability and potentially provide a more 

general model but has the risk of introducing inconsistency, reducing the quality of the 

model.  

Data from the other in vitro tests explored in this deliverable would be also compiled, but due 

to the difficulties in finding data they will be mostly explored as potential input for the model 

(i.e. as simpler experimental parameters that can be used to estimate toxicity) than as a 

parameter to be predicted. Finally, the consistent data obtained from WP3 and the insight of 

the experts in the field will be used to analyze the more diverse data and discuss its 

applicability.  

On the other hand, because the availability of both preexisting models and data is higher for 

chemicals, we will try to obtain models for all the parameters discussed here. Thus T5.2 will 

include, at least, the preliminary steps to assess the viability of creating new models, i.e. to 

compile a specific database, curate it and analyze the data; to calculate molecular 

descriptors and to check the statistical relevance of those. This process will create potential 
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models to be used to assess chemicals by themselves or as a part of combined material-

based models of T5.3. Furthermore, the findings from molecular-based models could be 

used to discuss aspects such as the influence of the cell type and assay conditions in the 

models, contributing to guide the selection and curation of data for the subsequent models 

on materials. 
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